Chemical Reactions and Dielectric Properties of the BaTiO₃-LaAlO₃ and BaTiO₃-LaAlO₃-LaTi_{3/4}O₃ Systems

S. Škapin, D. Kolar, and D. Suvorov

Jožef Stefan Institute, University of Ljubljana, Jamova 39, 1001 Ljubljana, Slovenia

Received October 16, 1995; in revised form October 15, 1996; accepted November 12, 1996

BaTiO₃-LaAlO₃ interaction at high temperatures results in formation of (Ba, La)(Ti, Al)O₃ solid solution, BaAl₂O₄, and Ba₂TiO₄. The composition of solid solution can be expressed as Ba_{1-n}La_nTi_{1-0.52n}Al_{0.36n}O₃ with $0 \le n \le 0.27$. Formation of secondary phases BaAl₂O₄ and Ba₂TiO₄ which form due to unequal solubility of La³⁺ and Al³⁺ ions into the perovskite BaTiO₃ lattice can be prevented by the addition of La₂O₃ and TiO₂ in ratio 2:3, i.e., as LaTi_{3/4}O₄. Incorporation of La and Al into BaTiO₃ strongly decreases the Curie temperature of BaTiO₃, ≈ 35 K/mol% LaAlO₃ added. (Ba, La)(Ti, Al)O₃ solid solution ceramics exhibit relatively low permittivities at room temperature (734–129) and very low dielectric losses, tan $\delta < 5 \times 10^{-4}$, measured at 1 MHz. The temperature stability of permittivity increases with LaTi_{3/4}O₃ as well with LaAlO₃ concentration. \odot 1997 Academic Press

1. INTRODUCTION

BaTiO₃-based rare earth containing ceramics exhibit valuable dielectric properties and are frequently used in manufacturing temperature stable ceramic capacitors and, more recently, for ceramic electronic components operating at microwave frequencies (1).

Rare earth ions, such as La³⁺, can be incorporated into the BaTiO₃ lattice only to a limited extent. La enters the A sites of the BaTiO₃ perovskite lattice and serves as a donor. The excess charge of La³⁺ ions on Ba^{2+} sites requires electrical compensation. This may be achieved by incorporation of ions of lower valency at Ba²⁺ or Ti⁴⁺ sites, or by formation of effectively negatively charged defects, e.g., cation vacancies $V_{Ba}^{\prime\prime}$, $V_{Ti}^{\prime\prime\prime\prime}$, anion interstitials O''_i or electrons (e'). At higher dopant levels, the La-containing BaTiO₃ ceramic is insulating and charge compensation is accomplished by vacancies at Ba or Ti sites. Whereas early investigators favored Ba vacancies (2-4), it was proposed later that charge compensation takes place by the creation of titanium vacancies (5). Charge compensation by titanium vacancies are further supported in (6–10).

Titanium vacancy mechanism implies the (Ba, La)TiO₃ solid solution extends on the tie line which points from $BaTiO_3$ to $LaTi_{3/4}O_3$ and may be expressed by the formula $Ba_{1-x}La_{x}Ti_{1-x/4}(V_{Ti}^{\prime\prime\prime\prime\prime})_{x/4}O_{3}$ (5). The limiting solid solubility was recently determined to be x = 0.3 at 1400°C (10). $La_4Ti_3O_{12}$ is a 12-layer hexagonal perovskite with 3/4 of the *B* positions occupied by Ti^{4+} , i.e., $LaTi_{3/4}O_3$, which was reported to be stable up to 1450°C (11). Two other compounds along the BaTiO₃-LaTi_{3/4}O₃ tie line have been described as being stable at 1400°C; hexagonal (10 layer) $BaLa_4Ti_4O_{15}$ (5, 12, 13) and hexagonal (18 layer) Ba₂La₄Ti₅O₁₈ (13). Formation of defects in perovskite structure which compensate replacement of Ba²⁺ ions with La³⁺ ions may be avoided or at least diminished by simultaneous incorporation of lower valence ions on Ti⁴⁺ sites. It was recently shown that La2/3 TiO3 may be effectively stabilized by forming a solid solution with LaAlO₃ (14). Al³⁺ ions are expected to enter the Ti sites in the BaTiO₃ lattice and act as acceptors (15). As such they compensate La^{3+} ions at Ba sites at room temperature.

LaAlO₃ crystallizes in a perovskite-like rhombohedral, nearly hexagonal structure which transforms into a simple cubic cell at 435°C (16). The compound melts congruently at ≈ 1995 °C (17).

Ismailzade (18) reported solid solubility of LaAlO₃ in BaTiO₃ of up to 25 mol %. This author also observed that LaAlO₃ strongly decreases the Curie temperature (T_c) of BaTiO₃. 5 mol% LaAlO₃ shifted T_c to -14° C.

It was expected that the extremely low dielectric losses of LaAlO₃ (tan $\delta < 10^{-5}$ at 10⁹ Hz) may improve the electric properties of (Ba, La)(Ti, Al)O₃ solid solutions. The aim of the present work was to investigate the structural and dielectric properties of ceramics based on BaTiO₃-LaAlO₃ solid solution ((Ba, La)(Ti, Al)O₃ss) in more detail.

2. EXPERIMENTAL PROCEDURE

Ceramic samples were prepared by the conventional powder sintering technique. The starting materials were reagent grade La_2O_3 , TiO₂, Al₂O₃, and BaTiO₃. Materials

were weighed, milled, dried, pressed into pellets, and calcined at 1400°C for up to 40 h with intermittent cooling, crushing, and repressing to assure equilibrium. Quenched powdered samples were examined by X-ray powder diffractometry (XRD) (Model PW 1710, Netherlands Philips, Bedrijven b. v. S&I, The Netherlands). Polished surfaces of pellets were examined by a scanning electron microscopy (SEM) (Jeol JXA 840A, Tokyo, Japan) equipped with electron probe wavelength (WDS) and energy-dispersive X-ray (EDS) analyzers using TRACOR (Model TRACOR, Series II X-ray Microanalyzer, TRACOR, The Netherlands) software for analysis.

Quantitative WDS analysis was performed by pentaerythritol (PET) (for La $L\alpha_1$, Ba $L\alpha_1$ and Ti $K\alpha_1$ lines) and by Thallium acid phthalate (TAP) (for the Al $K\alpha_1$ line) monochromators, under the following experimental conditions: 20 keV accelerating voltage and 10 nA beam current. A maximum of 0.7% standard counting deviation was allowed during the X-ray intensity measurements. La₂Ti₂O₇, BaTiO₃, and Al₂O₃ were used as standards for quantization. The PROZA (Phi-RhO-Z and A) matrix correction program (19) was applied to transform measured elemental k ratios into element concentrations. Oxygen content was calculated by difference from 100%.

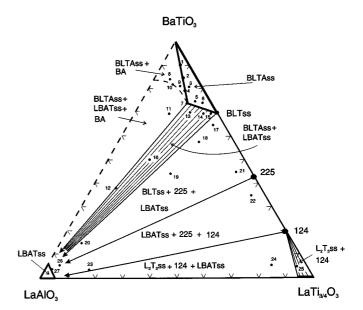
To achieve acceptable density for electrical measurements, $BaTiO_3$ -LaAlO₃ pellets had to be sintered above 1500°C, whereas excess TiO₂ decreased the sintering temperature to <1400°C. The capacitance and dielectric losses were measured at 1 MHz with a Hewlett Packard 4192A LF impedance analyzer.

3. RESULTS AND DISCUSSION

3.1. Structural and Compositional Studies

Heat treatment of $BaTiO_3-LaAlO_3$ mixtures results in the formation of limited solid solubility. According to the XRD results, in ceramics quenched from 1400°C it extends up to about 15 mol% LaAlO₃ in BaTiO₃. Up to 4 mol% BaTiO₃ remains tetragonal. With a higher amount of LaAlO₃ incorporated, BaTiO₃ solid solution (Ba, La)(Ti, Al)O₃ss is cubic. Above 15 mol% LaAlO₃, BaTiO₃-rich solid solution coexists with LaAlO₃-based solid solution ((La, Ba)(Al, Ti)O₃ss). LaAlO₃-based solid solution remains as a rhombohedral structure at up to 3 mol% BaTiO₃ addition, and then transforms at higher concentrations of BaTiO₃ into the cubic form. According to XRD data, the solid solution limit is estimated to be at 5 mol% BaTiO₃ in LaAlO₃.

The BaTiO₃-LaAlO₃ system is not binary. After heat treatment at 1400°C, besides BaTiO₃ and LaAlO₃-based solid solutions, the reaction product also contains BaAl₂O₄. The amount of BaAl₂O₄ depends on the BaTiO₃/LaAlO₃ ratio in the starting compositions. The maximum amount


TABLE 1Phases Identified in (1-x)BaTiO_{3-x}LaAlO₃ Compositionsafter Firing at 1400°C

x (mol % LaAlO ₃)	Phases identified ^a			
1	BLTAss(t)			
2	BLTAss(t)			
4	BLTAss(c), BAtraces			
15	BLTAss(c), BAtraces, B_2T traces			
50	BLTAss(c), BA, LBATss(c), B_2T traces			
90	LBATss(c), BAtraces, BLTAss(c) traces			
96	LBATss(c)			

^{*a*} BLTAss(t), tetrag. (Ba, La)(Ti, Al)O₃ solid solution; BLTAss(c), cub. (Ba, La)(Ti, Al)O₃; BA, BaAl₂O₄, B₂T, Ba₂TiO₄; LBATss(c), cub. (La, Ba)(Al, Ti)O₃ solid solution.

of $BaAl_2O_4$ was detected in the composition range 65–75 mol% $BaTiO_3$ and 35–25 mol% $LaAlO_3$. The maximum amount of $BaAl_2O_4$ was estimated from a comparison of X-ray peak intensities to be about 10 wt%. Besides $BaAl_2O_4$, in some samples faint XRD lines indicated the presence of Ba_2TiO_4 . The results of phase analysis are shown in Table 1.

Quantitative WDS analysis of $BaTiO_3$ -LaAlO₃ ceramics, equilibrated at 1400°C, revealed that La³⁺ and Al³⁺ ions are not incorporated in the (Ba, La)(Ti, Al)O₃ss in an

FIG. 1. Tentative subsolidus composition phase equilibrium diagram of the BaTiO₃–LaAlO₃–LaTi_{3/4}O₃ system at 1400°C. BLTAss, (Ba, La)(Ti, Al)O₃ solid solution; BLTss, (Ba, La)TiO₃ solid solution; LBATss, (La, Ba)(Al, Ti)O₃ solid solution; 225, Ba₂La₄Ti₅O₁₈; 124, BaLa₄Ti₄O₁₅; L₂T₃ss, LaTi_{3/4}O₃ solid solution (containing some La and Al); BA, BaAl₂O₄.

225

TABLE 2Results of the WDS Microanalysis of the (Ba, La)(Ti, Al)O3 Phase in (1-x)BaTiO3-xLaAlO3 Samples after Firing at 1400°Cand Their Calculated Formulas

Composition x	Measured (at.%):			Normalized to $Ba + La + Ti + Al + V_{Ti} + O_{stoie.} = 100\%$						
in $(1 - x)$ BaTiO ₃ : x LaAlO ₃	Ba	La	Ti	Al	Ba	La	Ti	Al	V_{Ti}	Calculated formula
).06	18.51	1.42	19.26	0.52	18.53	1.42	19.28	0.52	0.23	Ba _{0.93} La _{0.07} Ti _{0.96} Al _{0.03} V _{(Ti)0.01} O ₃
).10	16.70	1.84	17.32	0.68	18.16	2.00	18.84	0.74	0.32	Ba _{0.90} La _{0.10} Ti _{0.94} Al _{0.04} V _{(Ti)0.02} O ₃
).15	16.26	2.96	17.29	1.01	17.15	3.12	18.24	1.07	0.52	Ba _{0.85} La _{0.15} Ti _{0.92} Al _{0.05} V _{(Ti)0.03} O ₃
).25	15.79	4.12	17.55	1.60	15.92	4.15	17.69	1.61	0.64	$Ba_{0.79}La_{0.21}Ti_{0.89}Al_{0.08}V_{(Ti)0.03}O_{3}$
0.30	16.20	5.10	18.27	1.63	15.44	4.86	17.41	1.55	0.83	Ba _{0.76} La _{0.24} Ti _{0.88} Al _{0.08} V _{(Ti)0.04} O ₃
0.40	15.85	5.27	17.82	1.89	15.25	5.07	17.15	1.82	0.82	Ba _{0.75} La _{0.25} Ti _{0.87} Al _{0.09} V _{(Ti)0.04} O ₃
0.50	14.84	5.26	16.50	1.44	15.32	5.43	17.03	1.49	0.99	$Ba_{0.74}La_{0.26}Ti_{0.87}Al_{0.08}V_{(Ti)0.05}O_3$

(

equimolar ratio. The results of WDS analysis are shown in Table 2. In performing the analysis, at least 10 grains in each sample were analyzed. Standard deviations for element concentrations were calculated for particular samples and fall within the range of a maximum of $\pm 2\%$ of the average values given in Table 2. Some higher deviations are observed in samples where the grains analyzed were too small and the influence of microporosity, local topography, and secondary phases on the WDS measurements were high.

The results in Table 2 demonstrate that the concentrations of La^{3+} and Al^{3+} ions in (Ba, La)(Ti, Al)O₃ss depend on the starting LaAlO₃/BaTiO₃ ratio and approach saturation above 30 mol% LaAlO₃. The ratio of incorporated La^{3+}/Al^{3+} ions in BaTiO₃ lattice is approximately 3:1.

Measured concentrations were normalized to 100% (Table 2) and used to calculate the composition of solid solutions. The calculated formulas in Table 2 are based on the assumption that (Ba, La)(Ti, Al)O₃ss contain La on Ba sites and Al on Ti sites in the BaTiO₃ lattice. Excess La³⁺ charge on Ba²⁺ sites, which is not compensated by Al³⁺ charge on Ti⁴⁺ sites, is compensated by V_{Ti}^{''''}. This assumption is supported by WDS analysis which confirmed that [Ba] + [La] > [Ti] + [Al] in all compositions analyzed.

The experimental results make it possible to formulate the mechanism of the $BaTiO_3$ -LaAlO₃ reaction. La, which is incorporated into $BaTiO_3$ without matching Al, requires a stoichiometric amount of $[Ti_{3/4}(V_{Ti}''')_{1/4}]$ with corresponding oxygen for the construction of a perovskite lattice. Ti is supplied by $BaTiO_3$. Ba, which is set free, links with Al not incorporated into (Ba, La)(Ti, Al)O_3ss, to form $BaAl_2O_4$. The remaining Ba forms Ba_2TiO_4 . The overall reaction is described by the equation

$$(1-y)BaTiO_{3} + (x + y)LaAlO_{3} \rightarrow Ba_{1-(x+y)}La_{(x+y)}Ti_{1-((x/4)+y)}Al_{y}(V_{Ti}''')_{x/4}O_{3}$$

$$+ \frac{x}{2}BaAl_{2}O_{4} + \frac{x}{4}Ba_{2}TiO_{4}.$$

$$(1)$$

Equation [1] is consistent with the results of XRD and WDS analysis.

WDS analysis revealed that $LaAlO_3$ contains some Ba and Ti in (La, Ba)(Al, Ti)O₃ss (not expressed in the equation).

The formation of the parasitic phases $BaAl_2O_4$ and Ba_2TiO_4 in Eq. [1] can be prevented by the addition of excess La_2O_3 and TiO_2 in ratio 2:3 i.e., by the addition of $LaTi_{3/4}O_3$, according to

$$[1 - (x + y)]BaTiO_3 + yLaAlO_3 + xLaTi_{3/4} (V_{Ti}^{'''})_{1/4}O_3$$

$$\rightarrow Ba_{1-(x+y)}La_{(x+y)}Ti_{1-((x/4)+y)}Al_y(V_{Ti}^{''''})_{x/4}O_3.$$
[2]

A total of 27 compositions in the ternary $BaTiO_3$ -La $Ti_{3/4}O_3$ -La AlO_3 system were equilibrated at 1400°C for 40 h. Phases identified by XRD and WDS analysis are listed in Table 3.

The extent of the solid solution region of $(Ba, La)(Ti, Al)O_3ss$ and compatibility relationships with the stable compounds in the $BaTiO_3-LaTi_{3/4}O_3-LaAlO_3$ system are shown in Fig. 1.

Along the BaTiO₃-LaTi_{3/4}O₃ tie line, two already reported compounds were confirmed, namely BaLa₄Ti₄O₁₅ (5, 13, 14) and Ba₂La₄Ti₅O₁₈ (14). BaLa₄Ti₄O₁₅ and Ba₂La₄Ti₅O₁₈ are compatible with LaAlO₃ without appreciable solid solubility.

 TABLE 3

 XRD Analysis of Samples in the BaTiO₃-LaAlO₃-LaTi_{3/4}O₃

 System after Firing at 1400°C

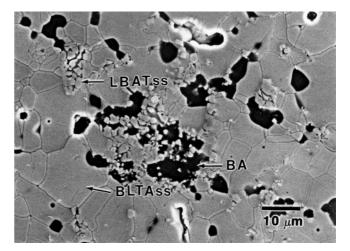
	Co	mposition (mol%)			
Specimen no.	BaTiO ₃	LaAlO ₃	LaTi _{3/4} O ₃	Phases identified ^a		
1	90	3	7	BLTAss		
2	85	5	10	BLTAss		
3	81	5	14	BLTAss		
4	80	7	13	BLTAss, BA traces		
5	75	5	20	BLTAss		
6	75	3	22	BLTAss		
7	73	9	18	BLTAss		
8	85	10	5	BLTAss, BA		
9	82	8	10	BLTAss, BA traces		
10	82.5	10	7.5	BLTAss, LBATss traces, BA		
11	70	17.5	12.5	BLTAss, LBATss, BA		
12	37.5	55	7.5	BLTAss, LBATss		
13	70	10	20	BLTAss, LBATss		
14	70	5	25	BLTAss, LBATss traces		
15	70	2.5	27.5	BLTAss, LBATss		
16	50	35	15	BLTAss, LBATss		
17	65	5	30	BLTss, LBATss traces		
18	57.5	12.5	30	BLTss, LBATss, 225 traces		
19	45	30	25	BLTss, LBATss, 225		
20	15	77.5	7.5	LBATss, BLTss, 225 traces		
21	35	5	60	LBATss, 225, BLTss traces		
22	25	10	65	124, 225, LBATss		
23	4	80	16	LBATss, 124		
24	5	10	85	L ₂ T _{3SS} , 124, LBATss traces		
25	5	3	92	$L_2 T_{3SS}, 124$		
26	5	90	5	LBATss, 225		
27	3.5	94.5	2	LBATss		

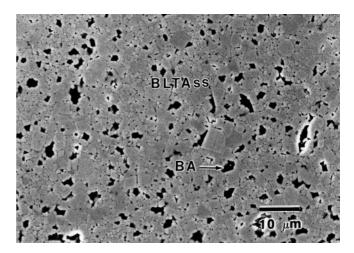
^{*a*}BLTAss, (Ba, La)(Ti, Al)O₃ solid solution; BLTss, (Ba, La)TiO₃ solid solution; LBATss, (La, Ba)(Al, Ti)O₃ solid solution; 225, Ba₂La₄Ti₅O₁₈; 124, BaLa₄Ti₄O₁₅; L₂T₃ss, LaTi_{3/4}O₃ solid solution.

In BaTiO₃-rich compositions, La replaces up to 30% of Ba (Ba_{0.7}La_{0.3}Ti_{0.925}O₃). With an average ratio of Al/La = 0.36 in (Ba, La)(Ti, Al)O₃ss, the composition of the solid solution may be expressed as Ba_{1-n}La_nTi_{1-0.52n}Al_{0.36n}O₃ with $0 \le n \le 0.27$. In the proposed formula, (Ti + Al) ≤ 1 . The difference is due to vacancies at Ti sites, $V_{Ti}^{''}$, which compensate the excess La over Al in (Ba, La)(Ti, Al)O₃ss.

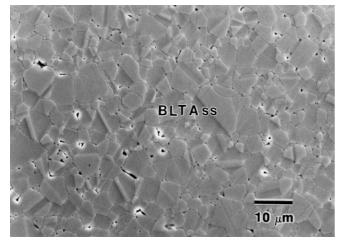
The region in Fig. 1 limited by $BaTiO_3$, $(Ba, La)(Ti, Al)O_3ss$, and $LaAlO_3$ is multiphase. The phases also include, besides $(Ba, La)(Ti, Al)O_3ss$ and $(La, Ba)(Al, Ti)O_3ss$, $BaAl_2O_4$ and Ba_2TiO_4 .

Microstructural investigations of the ceramics with selected compositions additionally confirmed the phase relations depicted in Fig. 1. La-rich ceramics with composition triangle BaTiO₃, within the LaAlO₃, and (Ba, La)(Ti, Al)O₃ss (sample 11) are multiphase. At least 3 phases can be detected in the microstructure (Fig. 2); $(La, Ba)(Al, Ti)O_3ss$, $(Ba, La)(Ti, Al)O_3ss$, and $BaAl_2O_4$. The fourth postulated phase (Ba_2TiO_4) is not detectable, probably due to too small amount. This part of the compositional diagram is not ternary. In the BaTiO₃-rich part of the same compositional triangle only two phases are




FIG. 2. SEM micrograph of the 0.9 $BaTiO_3$ -0.07 $LaTi_{3/4}O_3$ -0.03 $LaAlO_3$ composition after firing at 1400°C for 40 h (sample 11 in Fig. 1). BLTAss, (Ba, La)(Ti, Al)O_3 solid solution. LBATss, (La, Ba)(Al, Ti)O_3 solid solution; BA, BaAl_2O_4.

detectable in sintered ceramics, i.e., $(Ba, La)(Ti, Al)O_3ss$ and $BaAl_2O_4$ (sample 8, Fig. 3).


Ceramics with composition within the triangle $BaTiO_3$, (Ba, La)TiO₃ss, and (Ba, La)(Ti, Al)O₃ss are monophase (sample 1, Fig. 4 and sample 5, Fig. 5).

The difference in grain size of ceramics sintered at 1400° C for 40 h is worth noting. It increases from 5 µm in BaTiO₃-rich composition (sample 1) with increasing amount of La and Al to over 15 µm (sample 5).

Multiphase ceramics in the compositional triangle $BaTiO_3$ -LaAlO₃-(Ba, La)(Ti, Al)O₃ss become with increasing amount of La_{3/4}TiO₃ 2-phasic (sample 14, Fig. 6) and 3-phasic again (sample 18, Fig. 7). Microstructures are consistent with other observations in this work.

FIG. 3. SEM micrograph of the 0.85 $BaTiO_3$ -0.05 $LaTi_{3/4}O_3$ -0.1 LaAlO₃ composition after firing at 1400°C for 40 h (sample 8 in Fig. 1). BLTAss, (Ba, La)(Ti, Al)O₃ solid solution; BA, BaAl₂O₄.

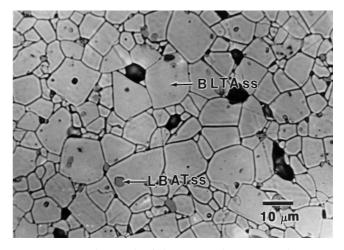
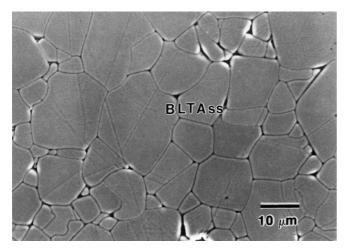
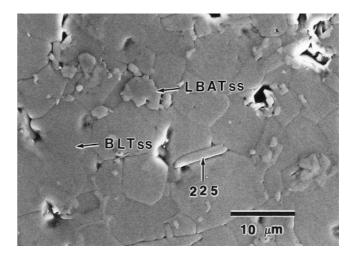


FIG. 4. SEM micrograph of the 0.7 $BaTiO_3$ -0.125 $LaTi_{3/4}O_3$ -0.175 $LaAlO_3$ composition after firing at 1400°C for 40 h (sample 11 in Fig. 1). BLTAss, (Ba, La)(Ti, Al)O_3 solid solution.

3.2. Dielectric Properties

Dielectric properties of the two binary systems $BaTiO_3$ -LaAlO₃ and $BaTiO_3$ -LaTi_{3/4}O₃ and a ternary system $BaTiO_3$ -LaAlO₃-LaTi_{3/4}O₃ were measured.


The dielectric properties of ceramics based on the BaTiO₃-LaTi_{3/4}O₃ system are shown in Fig. 8a. Addition of LaTi_{3/4}O₃ to BaTiO₃ strongly reduces the Curie temperature of the ceramic. This is in agreement with literature data. It is well known that the rare earth elements incorporated in BaTiO₃ structure decrease T_C (20). Four mol% LaTi_{3/4}O₃ addition to BaTiO₃ shifts T_C from 128°C to room temperature. Further addition of LaTi_{3/4}O₃ drasti-


FIG. 6. SEM micrograph of the 0.70 $BaTiO_3$ -0.25 $LaTi_{3/4}O_3$ -0.05 $LaAlO_3$ composition after firing at 1400°C for 40 h (sample 14 in Fig. 1). BLTAss, (Ba, La)(Ti, Al)O_3 solid solution; LBATss, (La, Ba)(Al, Ti)O_3 solid solution.

cally decreases the room temperature permittivity and dielectric losses (Table 4). A slight improvement in the dielectric properties of such ceramics can be obtained with a small excess of TiO_2 , and by applying an oxidizing atmosphere during sintering.

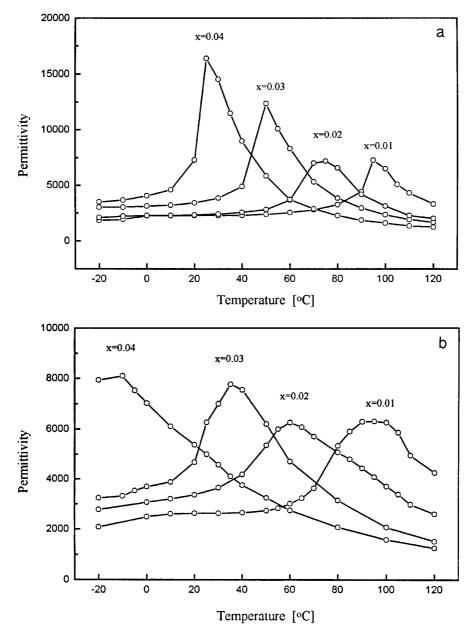

An even stronger shift of $T_{\rm C}$ was observed in ceramics based on BaTiO₃-LaAlO₃ systems (Fig. 8b). One mol% LaAlO₃ addition to BaTiO₃ decreases $T_{\rm C}$ by $\approx 35^{\circ}$ C. $T_{\rm C}$ was shifted to room temperature with a 3 mol% addition of LaAlO₃ to BaTiO₃. Again, further addition of LaAlO₃ causes a drastic decrease of room temperature permittivity

FIG. 5. SEM micrograph of the 0.75 $BaTiO_3$ -0.2 $LaTi_{3/4}O_3$ -0.05 $LaAlO_3$ composition after firing at 1400°C for 40 h (sample 5 in Fig. 1). BLTAss, (Ba, La)(Ti, Al)O_3 solid solution.

FIG.7. SEM micrograph of the 0.575 BaTiO₃–0.3 LaTi_{3/4}O₃–0.125 LaAlO₃ composition after firing at 1400°C for 40 h (sample 18 in Fig. 1). BLTss, (Ba, La)TiO₃ solid solution; LBATss, (La, Ba)(Al, Ti)O₃ solid solution; 225, Ba₂La₄Ti₅O₁₈.

FIG.8. Temperature dependence of permittivity for (a) $(1 - x)BaTiO_3 - xLaTi_{3/4}O_3$ compositions; (b) $(1 - x)BaTiO_3 - xLaAlO_3$ compositions (measured at 1 MHz).

and dielectric losses (Table 5) which are still higher than in the BaTiO₃-LaTi_{3/4}O₃ system. Such high dielectric losses in ceramics based on the BaTiO₃-LaAlO₃ system are probably due to the presence of the secondary phases BaAl₂O₄ and Ba₂TiO₄. The more pronounced shift of $T_{\rm C}$ can be ascribed, according to the proposed reaction scheme, to the incorporation of both La³⁺ and Al³⁺ ions into the BaTiO₃ structure during heat treatment (Eq. [1]).

In Table 6, the dielectric properties of monophase ceramics with various compositions based on the $BaTiO_{3}$ -

LaAlO₃-LaTi_{3/4}O₃ system are given. Relatively low permittivities (from 734–129) and low dielectric losses $\tan \delta < 5 \times 10^{-4}$ characterize such ceramics. The temperature stability of permittivity increases with LaTi_{3/4}O₃ as well as with LaAlO₃ concentration.

4. CONCLUSIONS

1. $BaTiO_3$ and $LaAlO_3$ react at high temperatures to form $(Ba, La)(Ti, Al)O_3ss$, $BaAl_2O_4$, and Ba_2TiO_4 . In

TABLE 4

Dielectric Constant (*DK*), Loss (tan δ), and Temperature Coefficient of Dielectric Constant (τ_K) of (1-x) BaTiO₃-xLaTi_{3/4}O₃-Based Ceramics (Sintered at 1400°C for 20 h and Measured at 1 MHz)

x in (1 - x) BaTiO ₃ : xLaTi _{3/4} O ₃	DK _{20°C}	$\tan\delta\times 10^4$	τ_K [ppm/K]
0.1	800	10	- 5518
+ 1 wt.% TiO ₂	820 ^a	7	-6472
0.15	402	4	- 3838
0.20	254	6	-2165
0.25	169	4	-1732
+ 1 wt.% TiO ₂	213 ^a	7	- 1799
0.30	138	3	- 1346

^a Sintered in oxygen atmosphere.

(Ba, La)(Ti, Al)O₃ss, $[La^{3+}] > [Al^{3+}]$ and the excess La^{3+} charge on Ba²⁺ sites is compensated by charged Ti vacancies, $V_{\text{Ti}}^{\prime\prime\prime\prime}$. The amounts of La³⁺ and Al³⁺ incorporated into (Ba, La)(Ti, Al)O₃ss depend on the initial BaTiO₃/LaAlO₃ ratio. The composition of the solid solution may be expressed as Ba_{1-n}La_nTi_{1-0.52n}Al_{0.36n}O₃ with $0 \le n \le 0.27$.

2. The formation of $BaAl_2O_4$ and Ba_2TiO_4 parasitic phases in the $BaTiO_3$ -LaAlO₃ reaction may be avoided by addition of $LaTi_{3/4}O_3$. In the $BaTiO_3$ -LaAlO₃-LaTi_{3/4}O_3 ternary system an extensive single phase region of (Ba, La)(Ti, Al)O₃ss exists.

3. Incorporation of La and Al into the $BaTiO_3$ lattice strongly shifts the Curie temperature to lower temperatures,

TABLE 5

Dielectric Constant (*DK*), Loss (tan δ), and Temperature Coefficient of Dielectric Constant (τ_K) of (1–*x*)BaTiO₃–*x*LaAlO₃-Based Ceramics (Sintered at 1560°C for 20 h and Measured at 1 MHz)

x in (1 - x) BaTiO ₃ : x LaAlO ₃	DK _{20°C}	$\tan\delta\times 10^4$	$\tau_{K} [ppm/K]$
0.1	360	22	- 4540
0.2	143	33	- 1199
0.3	71	29	- 730

by ≈ 35 K/mol% LaAlO₃. Ceramics based on (Ba, La) (Ti, Al)O₃ss exhibit low permittivities (from 734–129) and very low dielectric losses tan $\delta < 5 \times 10^{-4}$.

ACKNOWLEDGMENTS

We appreciate the help of Mr. Z. Samardžija for WDS analyses. Financial support from a the U.S.–Slovenian grant (Contract No. 95-351) is gratefully acknowledged.

REFERENCES

- T. Negas, G. Yeager, S. Bell, and R. Amren, in *Chemistry of Electronic Ceramic Materials* (P. K. Davies and R. S. Roth, Eds.), pp. 21–37, NIST Spec. Publication No. 804, 1991.
- J. B. MacChesney, P. K. Gallagher, and F. V. DiMarcello, J. Am. Ceram. Soc. 46(5), 197 (1963).
- 3 J. Daniels and K. H. Härdtl, Phillips Res. Rep. 31, 489 (1976).
- M. M. Nasrallah, H. U. Anderson, A. K. Agarwal, and B. F. Flandermeyer, J. Mater. Sci. 19, 3159 (1984).

TABLE 6Dielectric Constant (DK), Loss (tan δ), and Temperature Coefficient of Dielectric Constant (τ_K)of BaTiO₃-LaAlO₃-LaTi_{3/4}O₃-Based Ceramics (Sintered at 1400°C for 20 h and Measured at 1 MHz)

		Composition (mol%	6)		$\tan\delta\times 10^4$	τ_{K} [ppm/K]
Sample no.	BaTiO ₃	LaAlO ₃	LaTi _{3/4} O ₃	$DK_{20^{\circ}C}$		
1	90	3	7	734	5	- 5527
2	85	5	10	330	< 1	- 3312
				390 ^a	1	-2854
3	81	5	14	193	2	- 2295
				229^{a}	1	- 1929
4	80	7	13	180	4	- 1898
5	75	5	20	130	5	-1484
				144^{a}	2	-1587
6	75	3	22	207	2	- 1530
7	73	9	18	129 ^a	3	- 1162
14	70	5	25	121 ^a	4	- 1157
15	70	2.5	27.5	66	8	- 1219

^a Sintered in oxygen atmosphere.

.

- 5. G. H. Jonker and E. E. Havinga, Mater. Res. Bull. 17, 345 (1982).
- 6. G. V. Lewis and C. R. A. Catlow, J. Phys. Chem. Solids 47 (1), 89 (1986).
- 7. A. S. Shaikh and R. W. Vest, J. Am. Ceram. Soc. 69 (9), 689 (1986).
- G. W. Lewis, C. R. A. Catlow, and R. E. W. Casselton, J. Am. Ceram. Soc. 68(10), 555 (1985).
- 9. S. B. Desu, *Ceramic Transactions* (H. C. Ling, Ed.), Vol. 8. American Ceramic Society, Westerville, OH, 1990.
- D. Makovec, Z. Samardžija, U. Delalut, and D. Kolar, J. Am. Ceram. Soc. 78(8), 2193 (1995).
- N. F. Fedorov, O. V. Meljnikova, V. A. Saltikova, and M. V. Chistiakova, Zh. Neorg. Khim. 24(5), 1166 (1979).
- 12. M. German and L. M. Kovba, Zh. Neorg. Khim. 28(9), 2377 (1983).

- V. A. Saltikova, O. V. Meljnikova, N. V. Leonova, and N. F. Fedorov, *Zh. Neorg. Khim.* **30**(1), 190 (1985).
- S. Škapin, D. Kolar, and D. Suvorov, J. Am. Ceram. Soc. 76(9), 2359 (1993).
- N.-H. Chan, R. K. Sharma, and D. M. Smyth, J. Am. Cer. Soc. 65 (3), 167 (1982).
- 16. S. Geller and V. B. Bala, Acta Crystallogr. 9, 1019 (1956).
- 17. E. T. Fritsche and L. G. Tensmeyer, J. Am. Ceram. Soc. 50(3), 167 (1967).
- 18. I. G. Ismailzade, Izv. Akad. Nauk SSSR Ser. Fiz. 22(12), 1483 (1958).
- G. F. Bastin, H. J. M. Heijligers, and L. J. J. van Loo, Scanning 8, 150 (1986).
- 20. Von J. Kainz, Ber. Dt. Keram. Ges. 35(3), 69 (1958).